

UWB Tag 手持器 User Guide

Version V1.0

温州市研创物联网科技有限公司 地址:浙江省温州市瓯海区茶山高教园区高科路 技术热线/微信: 15606880772 QQ: 171932915 淘宝店: https://atomdesign.taobao.com/

目 录

1	研创物联 UWB TAG 手持器开发板介绍	2
1 1 1 1	1 简介 I.2 UWB MINI 3 模块介绍 I.3 UWB NANO 模块介绍 I.4 开发环境介绍 I.5 专业术语表	2 2 3 3 3 3
2	研创物联 UWB TAG 手持器工作原理	5
2 2 2	2.1 TOF MESSAGE REPORT 串口数据解析 2.2 TRILATERATION 算法计算 2.3 OLED 液晶显示	5 5 6
3	研创物联 UWB TAG 手持器使用方法	7
3 3 3 3	 .1 连接 UWB 模块 3.2 手持器供电 3.3 TAG 录入基站坐标信息 3.4 测试结果 	7 7 7 8
4	KEIL 5 安装及开发步骤	9
4 4 4 4	1.1 开发软件 1.2 安装 KEIL 5 1.3 打开工程 1.4 编译与下载	9 9 10 10
5	文档管理信息表	11

1 研创物联 UWB Tag 手持器开发板介绍

1.1 简介

UWB Tag 手持器开发板,旨在实现将 UWB Mini 3 模块 或 UWB Nano X1 模块 从串口输出的 TOF Report Message 数据 按照一定的格式进行解析,结合研创物联独家 Trilateration 三 边定位算法,简化数学运算真正实现在 STM32F103C8T6 单片 机(嵌入式系统)上对测距数据的实时解算,并且将坐标计 算结果 X, Y, Z 显示在 OLED 上。

STM32F103C8T6 单片机在没有 DSP 库及 FPU 浮点运算的支持下,依旧能够做到 5ms 解算一次坐标,该算法计算巧妙,调用简单,能够最大限度地缩短解算时间。

该功能适用于现场没有 PC 电脑但是需要显示定位信息的应用场合,例如:高速公路、工厂、沙漠、矿井、无人机等。

图 1.1 UWB Tag 手持器开发板实物图

1.2 UWB Mini 3 模块介绍

UWB Mini 3 模块采用 STM32F105 单片机为主控芯片。外围电路包括:DWM1000 模块、电源模块、LED 指示模块、拨码开关、 复位电路等。该模块既可以作为基站,也可以作为标签,通过拨码开关进行切换。

图 1.2.1 UWB Mini3 正面图

图 1.2.2 UWB Mini3 背面图

1.3 UWB Nano 模块介绍

UWB Nano 模块采用 STM32F103T8U6 单片机为主控芯片。Nano 系列为研创物联微小型设备,及其迷你的外形非常适合便携设备的开发,应用场合例如:UWB 便携标签、无人机 UWB 编队。UWB Nano 模块外围电路包括:DWM1000 模块、电源模块、 LED 指示模块等。该模块既可以作为基站,也可以作为标签,通过发送串口 AT 命令开关进行切换。

1.4 开发环境介绍

本软件开发编译平台为 KEIL 5.20 版本,固件库采用 STM32 KEIL 标准库 V3.5 编写。语言为标准 C 语言。请预留至少 1G 的电脑 硬盘空间对该软件进行安装操作,开发软件的安装流程,请见第 4 章。

1.5 **专业术语表**

简写	英文全称	含义
ANCHOR		基站,也称作信标锚点,指通过其它方式预先获得位置坐标
		的节点
DW1000		Decawave 出的一款芯片
DWM1000		Decawave 出的一款模组
IC	integrated circuit	芯片
PHY	physical layer	物理层
PSR	preamble symbol repetitions	前导符号重复
RTLS	real time location system	实时定位系统
TAG		标签
ТХ	receive	接收
ТСХО	temperature compensated crystal oscillator	温度补偿晶体振荡器
TDOA	time difference of arrival	TDOA 定位是一种利用时间差进行定位的方法。通过测量信
		号到达监测站的时间, 可以确定信号源的距离。
TOA	time of arrival	TOA 定位是一种直接利用信号到达时间进行定位的方法。
TOF	time of flight	TOF 飞行时间测距法,它主要利用信号在两个异步收发机

表 1.5 专业术语表

		(Transceiver) (或被反射面) 之间往返的飞行时间来测量节点
		间的距离。
ТХ	transmit	发送
TWR	two-way ranging	双向测距法,即两个异步收发机(Transceiver)都能获得测距
		值。
UWB	ultra-wide band	UWB (Ultra Wideband)是一种无载波通信技术,利用纳秒至微
		微秒级的非正弦波窄脉冲传输数据。

2 研创物联 UWB Tag 手持器工作原理

本软件控制思路可分为三个步骤: TOF Message Report 串口数据解析、Trilateration 算法计算、OLED 液晶显示。

2.1 TOF Message Report 串口数据解析

从 UWB 模块发来的数据格式内容为:

1.	mr	0f	000005a4	000004c8	00000436	000003f9	0958	с0	40424042	a0:0

- 2. ma 07 0000000 0000085c 00000659 000006b7 095b 26 00024bed a0:0
- 3. mc 0f 00000663 000005a3 00000512 000004cb 095f c1 00024c24 a0:0

MID MASK RANGEØ RANGE1 RANGE2 RANGE3 NRANGES RSEQ DEBUG aT:A

表 2.1 TOF 数据格式表

内容	功能	
MID	消息 ID, 一共有三类, 分别为 mr, mc, ma	
	mr 代表标签-基站距离(原生数据)	
	mc 代表标签-基站距离(优化修正过的数据,用于定位标签)	
	ma 代表基站-基站距离(修正优化过,用于基站自动定位)	
MASK	表示 RANGE0, RANGE1, RANGE2, RANGE3 有哪几个消息是有效的;	
	例如: MASK=7 (0000 0111) 表示 RANGE0, RANGE1, RANGE2 都有效	
RANGEO	如果 MID = mc 或 mr,表示标签 x 到基站 0 的距离,单位:毫米	
RANGE1	如果 MID = mc 或 mr,表示标签 x 到基站 1 的距离,单位:毫米	
	如果 MID = ma, 表示基站 0 到基站 1 的距离,单位:毫米	
RANGE2	如果 MID = mc 或 mr,表示标签 x 到基站 2 的距离,单位:毫米	
	如果 MID = ma, 表示基站 0 到基站 2 的距离,单位:毫米	
RANGE3	如果 MID = mc 或 mr,表示标签 x 到基站 3 的距离,单位:毫米	
	如果 MID = ma, 表示基站 1 到基站 2 的距离,单位:毫米	
NRANGES	unit raw range 计数值(会不断累加)	
RSEQ	range sequence number 计数值(会不断累加)	
DEBUG	如果 MID=ma,代表 TX/RX 天线延迟	
aT:A	T 是标签 ID, A 是基站 ID	
	此处提到的 ID 只是一个 short ID,完整的 ID 是 64 bit 的 ID	

为了保证串行通讯的数据及时可靠的接收,同时兼顾其它任务不受影响,采用了基于 DMA 和中断方式相结合的 UART 串行通 信方式。采用独家 DMA 传输空闲中断的方法,将表格中的内容 Rang0 / Rang1 / Rang2 / Rang3 解析出来,存入变量 Range_deca[0] / Range_deca[1] / Range_deca[2] / Range_deca[3]。 DMA 是 Direct Memory Access 的缩写,意思是"存储器直接访问",它是一 种高速的数据传输操作,允许在外部设备和存储器之间直接读/写数据,即不通过 CPU,也不需要 CPU 干预。整个数据传输操 作是在一个称作 DMA 控制器的控制下进行的。 CPU 除了在数据传输开始和结束时做一点处理外,在传输过程中可以进行其他 的工作。

2.2 Trilateration 算法计算

2.2.1 基于 UWB 测距的三边测量法理论基础

三边测量法的原理如右图所示,以三个节点 A、B、C 为圆心作圆,坐标分别为 (X_a, Y_a) , (X_b, Y_b) , (X_c, Y_c) , 这三个圆周 相交于一点 D, 交点 D 即为移动节点, A、B、C 即为参考节点, A、B、C 与交点 D 的距离分别为d_a, d_b, d_c。假设交点 D 的 坐标为(X,Y)。

$$\begin{cases} \sqrt{(X - X_a)^2 + (Y - Y_a)^2} = d_a \\ \sqrt{(X - X_b)^2 + (Y - Y_b)^2} = d_b \\ \sqrt{(X - X_c)^2 + (Y - Y_c)^2} = d_c \end{cases}$$
(2.2.1.1)

由式 2.2.1.1 可以得到交点 D 的坐标为:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 2(X_a - X_c) & 2(Y_a - Y_c) \\ 2(X_b - X_c) & 2(Y_b - Y_c) \end{pmatrix}^{-1} \begin{pmatrix} X_a^2 - X_c^2 + Y_a^2 - Y_c^2 + d_c^2 - d_a^2 \\ X_a^2 - X_c^2 + Y_b^2 - Y_c^2 + d_c^2 - d_b^2 \end{pmatrix}$$
(2.2.1.2)

三边测量法的缺陷是:由于各个节点的硬件和功耗不尽相同,所测出的距离不可能是理想值,从而导致上面的三个圆未必刚 好交于一点,在实际中,肯定是相交于一个小区域,因此利用此方法计算出来的(X,Y)坐标值存在一定的误差。这样就需要通 过一定的算法来估计一个相对理想的位置,作为当前移动节点坐标的最优解。

2.2.2 Trilateration Function

在 *POSICAL.c* 文件中, GetLocation()这个函数所实现的功能是: 传入基站的坐标 (单位: m) 及每个基站到标签的距离 (单位: mm), 计算 Tag 的 *Best Solution* (单位: m)。其中, 完成计算的函数为, *result = GetLocation(&report, 0, &anchorArray[0], &Range_deca[0]);*

前节提到,因为所测出的距离不可能是理想值,从而导致上面的三个圆未必刚好交于一点,所以,当基站 A0/A1/A2 在工作的 时候,从数学角度,将会有 2 个解;当有 A0/A1/A2/A3 在工作的时候,必有一个最优解。A3 作为辅助的基站,在 A0/A1/A2 完 成一次 Trilateration 算法后,得到两个解,将离 A3 球面最近的解,作为最优解。

该算法计算后,并没有进行软件滤波,开发者可根据实际需求,进行滤波算法的定制开发(卡尔曼滤波、中值滤波、一阶滤 波等等)。

2.3 OLED 液晶显示

硬件采用 OLED 作为显示模块,它是一款小尺寸(0.96 寸)、高亮、自带升压电路的高性能 OLED 显示模块,分辨率为 128*64, 该模块采用原装维信诺高亮 OLED 屏,使用 SSD1306 驱动 IC,该芯片内部集成 DCDC 升压,仅需 3.3V 供电,即可正常工作, 无需用户再添加升压 DCDC 电路。通过 SPI 接口,与 STM32 进行通讯。该液晶屏显示的内容如下:

T-A0	1000	mm	
T-A1	1000	mm	
T-A2	1000	mm	
T-A3	1000	mm	
Tag X:	0.74	т	
Tag Y:	0.74	т	
Tag Z:	2.00	т	

图 2.3 OLED 液晶显示内容

3 研创物联 UWB Tag 手持器使用方法

3.1 连接 UWB 模块

将 UWB Mini 3 模块或 UWB Nano X1 模块刷入具有串口输出能力的固件版本, UWB Mini3,在百度云网盘下载新固件 "DecaRangingEVB1000_Ver20170310_Beta3",并用 STLINK 更新 UWB 模块固件。UWB Nano 系列,请刷入固件 "Nano_X1_20170324"。通过排针-排母接口,将手持器与 UWB 模块对接,具体连接方式见下图。

图 3.1 UWB 模块与手持器相连实物图

3.2 手持器供电

手持器具有 Micro-USB 接口,已经有 UWB Mini3 移动电源的用户,可以直接使用。

3.3 Tag 录入基站坐标信息

按照步骤 4.3, 打开 Keil 工程软件。此外,根据实际基站的摆放情况,修改基站 A0 / A1 / A2 / A3 的实际坐标。该步骤将基站 的信息固化到 Tag 手持器的程序中,经过此次设置后,只要基站的相对位置不改变,Tag 手持器的程序就不需要改变。按照步骤 4.4 为 Tag 手持器更新固件。

🖻 🗇 Device	713	<pre>anchorArray[0].x = -2.500f; //anchor0.x uint:m</pre>
🗉 🌋 misc.c (StdPeriph Drivers:I	714	<pre>anchorArray[0].y = 0.000f; //anchor0.y uint:m</pre>
🗊 🕤 stm32f10x_dma.c (StdPeri	715	<pre>anchorArray[0].z = 2.000f; //anchor0.z uint:m</pre>
	716	
stm32f10x_exti.c (StaPeric	717	<pre>anchorArray[1].x = -6.80f; //anchor1.x uint:m</pre>
stm32f10x_flash.c (StdPeri	718	<pre>anchorArray[1].y = 0.000f; //anchor1.y uint:m</pre>
🗉 🎬 stm32f10x_gpio.c (StdPeri	719	<pre>anchorArray[1].z = 2.000f; //anchor1.z uint:m</pre>
🕮 酇 stm32f10x_iwdg.c (StdPer	720	
stm32f10x rcc c (StdPerin	721	<pre>anchorArray[2].x = 0.000f; //anchor2.x uint:m</pre>
stm22f10x_freedc (Stal Paria	722	<pre>anchorArray[2].y = -10.8f; //anchor2.y uint:m</pre>
sumszi i ux_um.c (sidpenp	723	<pre>anchorArray[2].z = 2.000f; //anchor2.z uint:m</pre>
stm32f10x_usart.c (StdPer	724	
🗉 🎬 GPIO_STM32F10x.c (GPIO)	725	<pre>anchorArray[3].x = 0.000f; //anchor3.x uint:m</pre>
RTE Device.h (Startup)	726	<pre>anchorArray[3].y = -5.80f; //anchor3.y uint:m</pre>
	727	<pre>anchorArray[3].z = 2.000f; //anchor3.z uint:m</pre>

图 3.3 在 Keil 工程中修改各个基站的 XYZ 坐标

3.4 测试结果

将 Tag 手持器移动进入基站的覆盖区域, Tag 手持器即开始自动解析距离与坐标计算。该计算结果与 PC 端上位机计算结果吻合。

4 KEIL 5 安装及开发步骤

4.1 开发软件

需要用到两个软件,分别为 Keil5 安装软件 mdk520 与注册机 Keygen。请注意,企业用户请购买正版 Keil 软件,如因使用 Keygen 而造成法律纠纷,本公司不承担任何后果。

4.2 安装 KEIL 5

双击 mdk511 启动安装,直到完成,自动弹出 Pack 的安装提示;

图 4.2.1 Pack Installer 图

点击 OK, 进入包安装界面 (如果没有弹出, 请按 🚵)。在 Pack 一栏, 列出了所有单片机的类型, 每种的右边都有一个 Install 按钮, 要开发哪种单片机, 就点击对应的 Install, 会自动安装相应的包, 用不到的单片机, 就不用安装。

本硬件采用了 STM32F103C8T6 单片机,所以,在左边这一栏,选择 STM32F103C8T6,必须下载的工程包有:

- ARM::CMSIS 工程包, 否则所有的单片机都不能用。
- Keil::ARM_Complier
- Keil::MDK-Middleware
- Keil::STM32F1xx_DFP

- ×				Pack	Act	on	Description
,	Summary		1	Device Specific	2 Pa	cks	STM32F103C8 selected
🗄 🍄 STM32F101	29 Devices	•		Keil::STM32F1xx_DFP	<u> ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا</u>	Up to c	STMicroelectronics STM32F1 Series Device Support, Drivers and Examples
• 🍄 STM32F102	8 Devices	_	1	Keil::STM32NUCLEO_BSP	٠	Up to c	STMicroelectronics Nucleo Boards Support and Examples
5TM32F103	29 Devices	-		Generic	20 F	acks	
STM32F103C4	ARM Cortex-M3, 72 MHz, 6 kB RAM, 16 kB ROM			ARM::CMSIS	*	Up to c	CMSIS (Cortex Microcontroller Software Interface Standard)
STM32F103C6	ARM Cortex-M3, 72 MHz, 10 kB RAM, 32 kB ROM			ARM::CMSIS-Driver_Validation	<u></u>	Install	CMSIS-Driver Validation
	ARM Cortex-M3, 72 MHz, 20 kB RAM, 64 kB ROM			ARM::CMSIS-FreeRTOS	\otimes	nstall	Bundle of FreeRTOS for Cortex-M and Cortex-A
STM32F103CB	ARM Cortex-M3, 72 MHz, 20 kB RAM, 128 kB ROM			ARM::CMSIS-RTOS_Validation	\otimes	nstall	CMSIS-RTOS Validation
STM32F103R4	ARM Cortex-M3, 72 MHz, 6 kB RAM, 16 kB ROM			ARM::mbedClient	<u> </u>	Install	ARM mbed Client for Cortex-M devices
STM32F103R6	ARM Cortex-M3, 72 MHz, 10 kB RAM, 32 kB ROM			ARM::mbedTLS	<u></u>	Install	ARM mbed Cryptographic and SSL/TLS library for Cortex-M devices
STM32F103R8	ARM Cortex-M3, 72 MHz, 20 kB RAM, 64 kB ROM			B ARM::minar	<u></u>	Install	mbed OS Scheduler for Cortex-M devices
STM32F103RB	ARM Cortex-M3, 72 MHz, 20 kB RAM, 128 kB ROM			Huawei:LiteOS	<u></u>	nstall	Huawei LiteOS kernel Software Pack
STM32F103RC	ARM Cortex-M3, 72 MHz, 48 kB RAM, 256 kB ROM			Keil::ARM_Compiler	<u> </u>	Up to c	Keil ARM Compiler extensions for ARM Compiler 5 and ARM Compiler 6
STM32F103RD	ARM Cortex-M3, 72 MHz, 64 kB RAM, 384 kB ROM			Keil:Jansson	\otimes	nstall	Jansson is a C library for encoding, decoding and manipulating JSON data
STM32F103RE	ARM Cortex-M3, 72 MHz, 64 kB RAM, 512 kB ROM			Keil::MDK-Middleware	<u> </u>	Update	Middleware for Keil MDK-Professional and MDK-Plus
STM32F103RF	ARM Cortex-M3, 72 MHz, 96 kB RAM, 768 kB ROM			IwiP:IwiP	*	Up to c	IwIP is a light-weight implementation of the TCP/IP protocol suite
STM32F103RG	ARM Cortex-M3, 72 MHz, 96 kB RAM, 1 MB ROM			Micrium:RTOS	\odot	Install	Micrium software components
STM32F103T4	ARM Cortex-M3, 72 MHz, 6 kB RAM, 16 kB ROM			Oryx-Embedded::Middleware	\otimes	Install	Middleware Package (CycloneTCP, CycloneSSL and CycloneCrypto)
STM32F103T6	ARM Cortex-M3, 72 MHz, 10 kB RAM, 32 kB ROM			RealTimeLogic::SharkSSL-Lite	\otimes	nstall	SharkSSL-Lite is a super small and super fast pre-compiled SharkSSL TLS library for
STM32F103T8	ARM Cortex-M3, 72 MHz, 20 kB RAM, 64 kB ROM			RealTimeLogic::SMQ	<u> </u>	nstall	Simple Message Queues (SMQ) is an easy to use IoT publish subscribe connectivity
STM32F103TB	ARM Cortex-M3, 72 MHz, 20 kB RAM, 128 kB ROM			wolfSSL::CyaSSL	<u> </u>	Deprec	Light weight SSL/TLS and Crypt Library for Embedded Systems
STM32F103V8	ARM Cortex-M3, 72 MHz, 20 kB RAM, 64 kB ROM			wolfSSL::wolfSSL	<u></u>	Install	Light weight SSL/TLS and Crypt Library for Embedded Systems
STM32F103VB	ARM Cortex-M3, 72 MHz, 20 kB RAM, 128 kB ROM			YOGITECH::fRSTL_ARMCMx_EVAL	<u></u>	Deprec	III DEPRECATED Product III YOGITECH fRSTL Functional Safety EVAL Software Pack
STM32F103VC	ARM Cortex-M3, 72 MHz, 48 kB RAM, 256 kB ROM			HOGITECH::fRSTL_STM32Fx_EVAL	\otimes	Deprec	III DEPRECATED Product III YOGITECH fRSTL Functional Safety EVAL Software Pack

图 4.2.2 固件库安装选型

也可以手动安装,找到要开发的单片机型号,Summary栏就会出现蓝色的字,单击会自动链接到下载网页。点击 DownLoad 按钮即可下载,双击下载的 Keil.STM32F1xx_DFP.2.1.0 ,启动安装,与之前的自动安装效果相同。

воокs Links	and nome audio equipment LCD parallel Interface, 8080/6800 modes - 5 V-tolerant I/Os - Timer with quadrature (incremental)	
Contact Information	encoder input - 96-bit unique ID	Device Family Pack DFP
Corporate	Core ARM Cortex-M3, 72 MHz	Support for this device is contained in:
Sales Channels Distributors	Memory 20 kB RAM, 64 kB ROM	Device Support, Drivers and
	Clock & Power 2.00 V 3.60 V, 72 MHz	Examples
	Communication SPI, I2C, CAN, USART, USB, Device	👱 Download

Timer/Counter/PWM 4 x 16-bit Timer

图 4.2.3 手动安装 Device Pack

4.3 **打开工程**

在 Project->MDK 文件夹下, 打开工程 Project, 界面如下如图所示。

图 4.3 开发工程文件界面

4.4 编译与下载

在 Target->Debug 中选择下载器为 ST-LINK Debugger,设置硬件仿真为 ST-Link,点击 Settings, SWD 下载方式,速度为 4M。

5 文档管理信息表

主题	UWB Tag 手持器使用手册	
版本	V1.0	
全 求 宁 州	KEIL MDK 帮助手册	
参与又相	UWB Mini3 使用手册 V3.3.1	
创建时间	2017/4/23	
创建人	Zhipeng Wu / Lynn	
最新发布日期	2017/4/23	

更改人	日期	文档变更纪录
Lynn	2017/4/23	UWB Tag 手持器使用手册 V1.0